
Paper IV: Weaknesses in the

Temporal Key Hash of WPA

Weaknesses in the Temporal Key Hash of WPA

Vebjørn Moen, Håvard Raddum, and Kjell J. Hole

This article describes some weaknesses in the key scheduling in Wi-Fi Pro-
tected Access (WPA) put forward to secure the IEEE standard 802.11-1999.
Given a few RC4 packet keys in WPA it is possible to �nd the Temporal Key
(TK) and the Message Integrity Check (MIC) key. This is not a practical at-
tack on WPA, but it shows that parts of WPA are weak on their own. Using
this attack it is possible to do a TK recovery attack on WPA with complexity
O

(
2105

)
compared to a brute force attack with complexity O

(
2128

)
.

1 Introduction

The IEEE standard 802.11-1999 [1] is a set of protocols de�ning a communica-
tion channel inspired by Ethernet, but using unlicensed radio spectrum bands
instead of wires. Since radio is used to communicate, eavesdropping can be
done by anyone with a radio receiver, and anyone with a radio transmitter can
write to the channel. This shows the need for built-in security in the WLAN
design. The 1999 standard includes a security protocol called Wired Equivalent
Privacy, or WEP. The goal was to achieve the same level of security as wired
Ethernet.

It has been shown that the WEP design has many basic �aws and does
not ful�ll the design goals. It does not defend properly against packet forgery
or replay, which allows an attacker to use the 802.11 infrastructure to launch
attacks on the WEP encryption key. In addition, WEP uses the RC4 encryption
algorithm in a way that makes it possible to mount plaintext recovery attacks
and key recovery attack using public domain software, e.g. AirSnort [2].

To correct these design �aws, the 802.11 Working Group (WG) has chartered
work to �nd a new security protocol. First the WG has de�ned WPA, which is
a WEP wrapper design, to �x all the known problems with WEP. It has been
established that WPA cannot ful�ll the original WEP design goals, because the
available CPUs on existing hardware are too limited. Therefore, the WG is also
working on a new protocol based on the Advanced Encryption Standard (AES)
that can meet the original design goals, but it will require new hardware.

The rest of this paper is organized as follows: Section 2 describes the algo-
rithms that are relevant to the security in WPA, Section 3 describes the attack,
Section 4 discusses the practicality and impact of the results, and Section 5 gives
a summary of this paper.

69

header
Frame Initialization

vector
Pad and
key ID

Frame
body ... check value

Integrity Frame check
sequence

1 44 3 4

Encrypted ClearClear

Figure 1: WEP frame. Length of �elds measured in bytes.

2 Algorithms

2.1 WEP

WEP was suggested in the IEEE standard 802.11-1999 to provide security equiv-
alent with that of a wired Ethernet. The WEP algorithm should insure con�den-
tiality and integrity of the frames on the wireless network. A Cyclic Redundancy
Check (CRC) is used to compute an Integrity Check Value (ICV) on the mes-
sage. The ICV is then concatenated on the message before encrypting with the
stream cipher RC4. The WEP-frame is illustrated in Figure 1.

RC4 is a symmetric cipher, i.e., the same key encrypts and decrypts the data.
The encryption key is a per-packet key which is obtained by concatenating an
Initialization Vector (IV) with the user key. Because of export regulations the
standard speci�es 64-bit keys where 24 bits are the IV, but many vendors have
also implemented 128-bit keys where 24 bits are the IV.

2.1.1 Security issues

The CRC used for the ICV can catch single-bit alterations with high probability,
but it is not cryptographically secure. The CRC is a linear function of the
message, and Borisov et al. [3] showed that it is possible to make controlled
modi�cations to a ciphertext without disrupting the checksum.

The standard ignores the issue of key management. Most vendors do not
implement any key distribution mechanism, this means that keys must be stati-
cally entered into either the driver software or �rmware. All the mobile stations
accessing the same access point use the same pre-shared key and can therefore
decrypt each others packets. Since the key needs to be manually distributed
and typed into a device, it is not likely that the key will be changed very often.
The IV is only 24 bits long, which implies that the same key and IV will be
reused, this is known as the two-time pad [3].

Fluhrer et al. [4] also found a correlation between the combination of the IV
and user key with the �rst RC4 key stream byte, which leads to a practical key
recovery attack.

2.2 Wi-Fi Protected Access

Because WEP has been shown to be totally insecure, the 802.11 WG has sug-
gested a new security protocol. The protocol is called Wi-Fi Protected Access
(WPA). The goal for this protocol is to �x all known security �aws in WEP and
it was designed to be deployed as a software patch on existing hardware.

WPA includes a key hash function [5] to defend against the Fluhrer et al. [4]
attack, a Message Integrity Code (MIC) [6] and a key management scheme based

70 Paper IV: Weaknesses in the Temporal Key Hash of WPA

Key Mixing

Temporal Key

48−bit IV
counter

Transmitter Address
RC4KEY

WEPPlaintext

MIC

MIC Key
Transmitter Address ||

Ciphertext

Receiver Address

Figure 2: WPA encapsulation process

on 802.1X [7] to avoid key reuse and to ease the key distribution. Figure 2 shows
the encapsulation process.

The 16-byte Temporal Key (TK) is obtained from the key management
scheme during the authentication, and goes into the key hash function together
with the 6-byte Transmitter Address (TA) and a 48-bit IV, often called the
TKIP sequence counter. The key hash function outputs a 16-byte RC4 key
where the three �rst bytes are derived from the IV. This key is used only for
one WEP frame, since the IV is implemented as a counter which increases af-
ter each package, and the key is therefore often called a per-packet key. The
IV counter also works as a defense against replay attacks, the receiver will not
accept packets with smaller or equal IV to previously received packets.

Integrity of the message is insured by the MIC. This function takes as input
a MIC key, TA, receiver address, and the message, and outputs the message
concatenated with a MIC-tag. If necessary this output is fragmented before it
enters WEP.

This means that WPA is a wrapper for WEP insuring that a <TK,IV> pair
is only used once by a sender, and improving the integrity of WEP frames by
applying a non-linear message integrity function. More details about the MIC
can be found in [6].

2.2.1 Key mixing

The key mixing function is described by Housley et al. [5], this function is also
called a temporal key hash. As shown on Figure 2, this function takes as input
the TK, the TA and the 48-bit IV, and outputs a 128-bit WEP key where 24
bits are derived from the IV. The least signi�cant 16 bits of the 48-bit IV are
denoted IV16, and 32 most signi�cant bits are denoted IV32. The key mixing
is a two-phase process which may be summarized as:

P1K = Phase1(TK, TA, IV 32)
RC4KEY = Phase2(P1K, TK, IV 16)

2.2 Wi-Fi Protected Access 71

PHASE1_STEP1:

P1K[0] = Lo16(IV32)

P1K[1] = Hi16(IV32)

P1K[2] = Mk16(TA[1],TA[0])

P1K[3] = Mk16(TA[3],TA[2])

P1K[4] = Mk16(TA[5],TA[4])

PHASE1_STEP2:

FOR i = 0 to 7

BEGIN

j = 2*(i & 1)

P1K[0] = P1K[0] + S[P1K[4] ⊕ Mk16(TK[1+j],TK[0+j])]

P1K[1] = P1K[1] + S[P1K[0] ⊕ Mk16(TK[5+j],TK[4+j])]

P1K[2] = P1K[2] + S[P1K[1] ⊕ Mk16(TK[9+j],TK[8+j])]

P1K[3] = P1K[3] + S[P1K[2] ⊕ Mk16(TK[13+j],TK[12+j])]

P1K[4] = P1K[4] + S[P1K[3] ⊕ Mk16(TK[1+j],TK[0+j])] + i

END

Algorithm 1: Phase1 of Temporal Key hash

S

i S

S

S

S

||TK[4+2*(i&1)]
TK[5+2*(i&1)]

TK[9+2*(i&1)]

TK[1+2*(i&1)]
||TK[0+2*(i&1)]

TK[1+2*(i&1)]
||TK[0+2*(i&1)]

TK[13+2*(i&1)]

||TK[8+2*(i&1)]

P1K[0]P1K[4] P1K[3] P1K[2] P1K[1]

||TK[12+2*(i&1)]

Figure 3: One of 8 rounds of the �rst phase of temporal key hash. This round
is repeated for i = 0..7.

72 Paper IV: Weaknesses in the Temporal Key Hash of WPA

Phase 1 is shown in Algorithm 1 and in Figure 3. This part is usually only
done once every 216 packets and cached. It takes TK, TA and IV32 as input
and outputs P1K used as input in Phase 2.

PHASE2_STEP1:

PPK[0] = P1K[0]

PPK[1] = P1K[1]

PPK[2] = P1K[2]

PPK[3] = P1K[3]

PPK[4] = P1K[4]

PPK[5] = P1K[4] + IV16

PHASE2_STEP2:

PPK[0] = PPK[0] + S[PPK[5] ⊕ Mk16(TK[1],TK[0])]

PPK[1] = PPK[1] + S[PPK[0] ⊕ Mk16(TK[3],TK[2])]

PPK[2] = PPK[2] + S[PPK[1] ⊕ Mk16(TK[5],TK[4])]

PPK[3] = PPK[3] + S[PPK[2] ⊕ Mk16(TK[7],TK[6])]

PPK[4] = PPK[4] + S[PPK[3] ⊕ Mk16(TK[9],TK[8])]

PPK[5] = PPK[5] + S[PPK[4] ⊕ Mk16(TK[11],TK[10])]

PPK[0] = PPK[0] + RotR1(PPK[5] ⊕ Mk16(TK[13],TK[12]))

PPK[1] = PPK[1] + RotR1(PPK[0] ⊕ Mk16(TK[15],TK[14]))

PPK[2] = PPK[2] + RotR1(PPK[1])

PPK[3] = PPK[3] + RotR1(PPK[2])

PPK[4] = PPK[4] + RotR1(PPK[3])

PPK[5] = PPK[5] + RotR1(PPK[4])

PHASE2_STEP3:

RC4KEY[0] = Hi8(IV16)

RC4KEY[1] = (Hi8(IV16) | 0x20) & 0x7F RC4KEY[2] = Lo8(IV16)

RC4KEY[3] = Lo8((PPK[5] ⊕ Mk16(TK[1],TK[0])) > > 1)

FOR i = 0 to 5

BEGIN

RC4KEY[4+(2*i)] = Lo8(PPK[i])

RC4KEY[5+(2*i)] = Hi8(PPK[i])

END

Algorithm 2: Phase2 of the temporal key hash

Phase 2 takes the output from Phase1, TK and IV16 as input, and outputs
the 128-bit WEP key. Phase 2 is described in Algorithm 2 and in Figure 4.
Note that the TK is viewed as an array [0..15] of 8-bit bytes.

The S-box is a bijective nonlinear function de�ned by a table lookup in [5],
it takes a 16-bit input and outputs a 16-bit value. The Mk16 function takes two
8-bit inputs and produces a 16-bit word, such that Mk16(X,Y) = 256 ∗ X + Y
which is equivalent to Mk16(X,Y) = X||Y . Hi16 takes a 32-bit input and
returns the most signi�cant 16 bits, Lo16 takes a 32-bit input and returns the
least signi�cant 16 bits. Hi8 and Lo8 are similar but with input size 16 bits
and output size 8 bits. Furthermore, & denotes bit-wise logical AND, and |
represents bit-wise logical OR. Also, note that + in the Algorithms 1 and 2, and

2.2 Wi-Fi Protected Access 73

S

>>1

P1K[1]

PPK[1]

S

>>1

P1K[2]

PPK[2]

S

>>1

S

>>1

>>1

>>1

S

S

P1K[3]

PPK[3]

P1K[0]

PPK[0]

TK[3]||TK[2]

TK[5]||TK[4]

TK[7]||TK[6]

TK[9]||TK[8]

P1K[4]

PPK[5]

P1K[4]

PPK[4]

TK[11]||TK[10]

TK[1]||TK[0]

TK[13]||TK[12]

TK[15]||TK[14]

IV16

Figure 4: Phase 2 of the temporal key hash. The 96-bit PPK is used together
with 16 bits of the IV and 8 bits of the TK to create the 128-bit WEP key.

� in Figures 3 and 4 are addition modulo 216; ⊕ represents bit-wise exclusive
OR. Both RotR1 and >>1 denote right circular shift by 1. P1K and PPK are
treated as arrays of 16 bit words and RC4KEY is treated as an array of 8-bit
bytes.

3 Attacking Temporal Key Hash

This section describes an attack on the temporal key hash described above. It
is assumed that the attacker has knowledge of a few (less than 10) RC4-keys
computed under the same IV32. Whether this is a realistic assumption or not
will be discussed in Section 4.

Under this assumption we show that the attacker can easily compute the
TK, and thus decrypt any packet the same way the legitimate receiver does.
The attack has a complexity of about 232 simple operations, and takes a few
minutes to execute on a normal modern PC. The attack is basically done by
computing backwards through Phase 2, guessing on parts of the TK. We can
check if a guess is right or wrong since we know that the P1K-values do not
change before IV32 changes.

The attack makes use of the fact that eight bits of TK can be computed
directly from an RC4-key. The PPK-values output from Phase 2 are known
from the RC4-key, in particular PPK[5] is known. By looking at Step 3 of
Phase 2 in Algorithm 2 we see how RC4KEY[3] is computed It is then easy to
reveal the least signi�cant bit of TK[1], and the seven most signi�cant bits of
TK[0].

The rest of this section describes the attack in detail, showing how we can

74 Paper IV: Weaknesses in the Temporal Key Hash of WPA

break the rest of the TK into six parts, and guess on one part at the time. In
the diagrams below, thick lines indicates that we know the values carried on
them, and dotted lines indicate that there are two choices for the values on the
lines.

3.1 Finding TK[10] and TK[11]

PPK[5]

>>1

S

>>1

P1K[4]

IV16

PPK[4] PPK[3]

TK[11]||TK[10]

Figure 5: Part of Phase 2 needed to compute TK[10] and TK[11] .

Figure 5 is cut out from Figure 4 of Phase 2 of the key hash. The attack is based
on the divide-and-conquer technique as illustrated in the �gure. The idea is to
�nd some bytes of the TK at a time, and Figure 5 shows the parts of PPK and
TK which are needed to calculate backwards to P1K[4]. Since PPK[3], PPK[4]
and PPK[5] are known we can start backtracking Phase 2. The arrows show
what is input and output.

The �rst thing we need to do is to right shift PPK[3] and PPK[4] by one, and
this is straight forward. The inverse of addition modulo 232 is subtraction mod-
ulo 232. Using this we can compute backwards up to the point where the values
depend on TK[10] and TK[11]. Now we guess on the value of TK[11]||TK[10],
which allows us to backtrack through the XOR and S-box and two additions
modulo 232. Remember that the IV is a known value, sent in the clear in the
WPA packet. For each guess of TK[11]||TK[10] we get a suggestion for P1K[4].
We repeat the above procedure for each RC4-key that we are using in the attack,
and if di�erent RC4-keys give di�erent P1K[4]-values, the guess was wrong. Us-
ing two or three RC4-keys should be enough to eliminate all but the correct
values of TK[10] and TK[11].

3.1 Finding TK[10] and TK[11] 75

3.2 Finding TK[8] and TK[9]

>>1

S

>>1

PPK[3] PPK[2]

TK[9]||TK[8]

PPK[4]

P1K[4]

Figure 6: Part of Phase 2 needed to determine TK[8] and TK[9].

Figure 6 shows the part of Phase 2 necessary to compute TK[8] and TK[9].
Note that when we found TK[10] and TK[11] during the previous step, we also
found the correct value of P1K[4]. Therefore, TK[8] and TK[9] can be computed
directly, without any guessing.

3.3 Finding TK[6] and TK[7]

As Figure 7 shows, TK[6] and TK[7] can be found exactly the same way as
TK[10] and TK[11] were found.

3.4 Finding TK[0], TK[1], TK[12] and TK[13]

Consider the part of Phase 2 shown in Figure 8. Here we take advantage of the
fact that only eight bits of TK[0] and TK[1] are unknown. In order to compute
the value of P1K[0], we can again make use of the now known value of P1K[4],
but this time it is necessary to guess on TK[12], TK[13], and the eight unknown
bits of TK[0] and TK[1] to reconstruct a candidate for P1K[0], a total of 24
bits. Again, if we don't get the same value of P1K[0] for all RC4-keys, we can
discard the current guess as wrong.

At this stage, a subtle point comes into play. Assume we take the correct
values of TK[0], TK[1], TK[12] and TK[13], but �ip the least signi�cant bit of
TK[12]. This is a wrong guess, and should be discarded given su�ciently many

76 Paper IV: Weaknesses in the Temporal Key Hash of WPA

>>1

S

>>1

PPK[2]

TK[7]||TK[6]

P1K[3]

PPK[3] PPK[1]

Figure 7: Part of Phase 2 needed to calculate TK[6] and TK[7]

RC4-keys. We will compare the values obtained in Figure 8 using this guess,
to the values obtained with the correct guess. The guess for TK[0] and TK[1]
is the correct one, so the values on the horizontal wire on the top will be equal
in both cases. Going through the rotation in the bottom half, the values will
di�er only in the most signi�cant bit. This is the same as saying that they
di�er by 215 (mod 216). Since the remaining operations for computing P1K[0]
are subtraction mod 216, the computed values for P1K[0] with this wrong key
guess will di�er in the most signi�cant bit from the correct value of P1K[0]. In
particular, the P1K[0]-values computed with the wrong guess will all be equal!
This means that the least signi�cant bit of TK[12] can not be determined at this
point using our method, however, it is easily determined later. It also means
that P1K[0] is not determined completely, we only know the low 15 bits.

3.5 Finding TK[2], TK[3], TK[14] and TK[15]

Figure 9 shows the most expensive part of the attack. Here we will guess on
TK[2], TK[3], TK[14] and TK[15] at the same time. For each guess we will
compute the values of P1K[1] and check if they are equal. The matter is slightly
complicated by the fact that we do not know P1K[0] completely. P1K[0] can
take one of two values, so we have to do the check on P1K[1] for both values. For
the correct guess of TK[14] and TK[15], there will be two values of TK[3]||TK[2]
suggested, one for each P1K[0].

The problem with the least signi�cant bit occurs here too, we can not �nd
the least signi�cant bit of TK[14]. This means we do not need to guess on it

3.5 Finding TK[2], TK[3], TK[14] and TK[15] 77

>>1

>>1

S

P1K[4]

PPK[5]

TK[1]||TK[0]

TK[13]||TK[12]

IV16

PPK[0]PPK[4]

P1K[0]

Figure 8: Part of Phase 2 needed to compute TK[0], TK[1], TK[12] and TK[13]

either, so there will be a total of 31 bits guessed. For each guess we will have
to do the check on P1K[1] twice, once for each of the two possible values of
P1K[0], so the overall complexity is 232 checks. This step dominates the overall
complexity of the attack. After this we are left with four sets of possible values
of TK[2], TK[3], TK[12], and TK[14].

3.6 Finding TK[4] and TK[5]

Finally, Figure 10 shows how TK[4] and TK[5] are found by checking on the
P1K[2]-values. Each guess also includes guessing on the least signi�cant bit of
TK[14]. For each of the two possibilities of TK[14] there will be one TK[5]- and
TK[4]-value suggested as correct.

3.7 Finding the least signi�cant bits of TK[12] and TK[14]

After completing all six steps described above, we are left with four possible
values for the whole TK. Each possible TK has its corresponding P1K-value.
The correct TK can now be found by running Phase 1 for each of the TK
candidates, and see which one that gives its corresponding P1K as output. The
probability that a wrong TK results in its corresponding P1K is 4∗2−80 = 2−78

since P1K is 80 bits.

78 Paper IV: Weaknesses in the Temporal Key Hash of WPA

S
S

>>1

PPK[0]

P1K[4] P1K[1]

PPK[1]

TK[1]||TK[0]

IV16

P1K[0]

TK[3]||TK[2]

TK[15]||TK[14]

Figure 9: Part of Phase 2 needed to calculate TK[2], TK[3], TK[14] and TK[15]

3.8 Attacking with only two RC4-keys

When the attacker only has two RC4-keys, she only has a 16-bit condition for
eliminating wrong guesses at each step. In the step with TK[0], TK[1], TK[12]
and TK[13], we are guessing on 23 bits, so we expect to have about 27 candidates
suggested for these four bytes. In the step with TK[2], TK[3], TK[14] and TK[15]
we are guessing on 31 bits, so we expect to be left with 215 candidates for this
part of the TK. In the other steps we are guessing on 16 bits, so we expect to be
only left with the correct TK-parts. With the four possible variations of the least
signi�cant bit of TK[12] and TK[14], this gives us 4 ·27 ·215 = 224 candidates for
the whole TK. Each candidate has its corresponding set of P1K-values. Now we
can run Phase 1 for each candidate and see which one has matching suggestions
for the P1K value from both Phase1 and Phase2. The probability of a wrong
TK to result in corresponding P1K values is 224 · 2−80 = 2−56, so with high
probability only the correct TK will pass this test. Total work with only two
texts is approximately O

(
238

)
, since we need to guess on 31 bits for each of the

27 suggestions for TK[0], TK[1], TK[12] and TK[13].

3.9 Temporal Key recovery attack on WPA

The results in this paper imply that it is possible to mount a Temporal Key
recovery attack on WPA with time complexity O

(
2105

)
compared to simply

brute force search on the TK, which has time complexity O
(
2128

)
. The idea of

this attack is simply to brute force two distinct RC4 keys with 104 unknown bits
in each and then apply the attack described in this paper to recover the 128-
bit Temporal Key and the 64-bit message authentication key with additional
O

(
238

)
e�ort. This attack has time complexity O

(
2105

)
which still is not

practical, but it is a signi�cant reduction.

3.8 Attacking with only two RC4-keys 79

PPK[1]

>>1

S

>>1

TK[5]||TK[4]

P1K[2]

PPK[2] PPK[0]

TK[15]||TK[14]

Figure 10: Part of Phase 2 needed to compute TK[4] and TK[5].

4 Discussion of the attack

The attack described in the previous section has been implemented on a com-
puter to verify its correctness. The processor used is an Intel Pentium 4 2.53
GHz, and it takes about 6-7 minutes to recover the TK given four or more RC4-
keys. Given only 2 texts the work is a factor 27 bigger, which gives a running
time of approximately 15 hours.

This makes it a highly practical attack, but if the results of this paper shall
have any impact, the important question is: �How likely is it that an attacker
gets two RC4-keys generated under the same IV32?� The answer to this question
depends on the implementation. The main contribution of this paper is therefore
to highlight the weak spots of WPA.

4.1 Loss of RC4-key = total loss of security

The most important thing to keep in mind for an implementor is that RC4-keys
used to encrypt packets, and the TK are equally important to keep secret. As
this paper shows, the loss of a few RC4-keys allows the attacker to recover the
long term secret TK, and not only the contents of the compromised packets.

In [6], describing the details of the MIC part of WPA, it is stressed that
the integrity of a packet relies on the fact that each packet is encrypted. The
author points out that the loss of one RC4-key allows the attacker to recover the
MIC-key, and thus produce a valid MIC-tag to a packet of her choice. However,
the attacker needs to block the receiver from receiving this and any subsequent
packets until the modi�ed packet has been inserted on the channel. Also, the
attacker can only modify the particular compromised packet, since the other
packets are protected by encryption using other keys. This seems to limit the
threat to that of an active adversary with capabilities of blocking the receiver,
being able to modify compromised packets.

80 Paper IV: Weaknesses in the Temporal Key Hash of WPA

This paper shows that the compromise of two or more RC4-keys is much
more serious. The attacker may recover all secret keys the user has, and can
therefore perform any action the user can do. In particular, WPA provides no
forward secrecy since the attacker can construct earlier RC4-keys, as well as
future ones, once some keys have leaked.

4.2 Cut-and-paste cryptographic primitives

It is quite common to take (parts of) existing cryptographic primitives and
construct new cryptographic algorithms from them. For example, WPA uses
RC4 for encryption, and parts of the AES round function in the temporal key
hash. Ferguson [6] warns that the MIC function used in WPA is only secure
in this particular setting. We would like to issue the same warning when it
comes to temporal key hash: it is no good as a hash function, but only as a key
generator.

4.3 Possible attack scenario

It is possible to imagine a situation where a leader of a group is communicating
on behalf of the whole group. Some parts of the information the leader receives
he wants to keep to himself, while other parts should be broadcast to all the
group members. For instance, a review form for conference submissions often
contains the �elds �comments to program chair only� and �comments to program
committee�. Since WPA is a wireless network, all members of the group can
receive the packets broadcast from the access point, but only the leader holding
the TK can decrypt the packets. Some of the packets are for the whole group
to read. The leader can choose to broadcast the contents of these packets to the
group, but since the group members can receive the encrypted versions of these
packets themselves, a cheaper way would be to just broadcast the RC4-keys for
the packets in question, and let each member do the decryption himself.

Someone not aware of the shortcomings of the temporal key hash might opt
for this solution, not knowing this allows the whole communication to be read
by everyone.

5 Summary

We have shown the whole security in WPA relies on the secrecy of all packet
keys. Given one packet key it is possible to �nd the MIC key and given two
packet keys with the same IV32 an attacker can do anything the legitimate user
can, for the duration of the TK.

Since these packet keys are supposed to be kept secret, the attack in this
paper does not imply that WPA is broken, but it underlines the importance of
keeping each and every packet key secret.

References

[1] IEEE 802.11 WG, 802.11b: Standards for Local and Metropolitan Area Net-
works: Wireless Lan Medium Access Control (MAC) and Physical Layer
(PHY) Speci�cations. IEEE, 1999.

4.2 Cut-and-paste cryptographic primitives 81

[2] Airsnort, last visited: June 12th, 2006. [Online]. Available: airsnort.shmoo.
com

[3] N. Borisov, I. Goldberg, and D. Wagner, �Intercepting mobile communica-
tions: The insecurity of 802.11,� in MOBICOM 2001, 2001.

[4] S. Fluhrer, I. Mantin, and A. Shamir, �Weaknesses in the key scheduling
algorithm of RC4,� Lecture Notes in Computer Science, vol. 2259, pp. 1�24,
2001. [Online]. Available: citeseer.ist.psu.edu/�uhrer01weaknesses.html

[5] R. Housley, D. Whiting, and N. Ferguson, �Alternate temporal key hash,�
IEEE doc. 802.11-02/282r2, 2002.

[6] N. Ferguson, �Michael: an improved MIC for 802.11 WEP,� IEEE doc.
802.11-2/020r0, 2002.

[7] IEEE 802.1 WG, 802.1x: Standards for Local and Metropolitan Area Net-
works: Port-Based Access Control. IEEE, 2001.

82 Paper IV: Weaknesses in the Temporal Key Hash of WPA

