

http://ba-con.com.ar/

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 2/54

Agenda

© WPA/WPA?2 authentication

© WPA-PSK assessment
@ How does that work ?
@ Theoritical attack cost
@ Implementation comparisons
@ Passphrase strength assessment
@ Limits of practical attacks

e WPA-EAP thoughts
@ EAP authentication
@ Pwning the Master Key
@ Practical considerations

@ Conclusion

Packin’ the PMK — Cédric Blancher and Simon Marechal — 3/54

Introduction

Wi-Fi security...
@ WEP is crippled and broken
@ WPA came up to replace it
@ Now, we have WPA2

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 3/54

Introduction

Wi-Fi security...
@ WEP is crippled and broken
@ WPA came up to replace it
@ Now, we have WPA2

@ What are WPA and WPA2 good at?

@ How long will they stand ?

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 4/54
Agenda

© WPA/WPA?2 authentication

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 5/54

Authentication modes

@ Preshared secret (PSK)
e EAP

PMK |—)(4 Way Handshake)—)l PTK |
G

Key hierarchy
@ Authentication leads to Master Key (MK)
o Pairwise Master Key (PMK) derived from MK

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 6/54

One key to rule them all...

From MK come all further keys
@ Pairwise Master Key
@ Key exchange keys
@ Encryption keys
@ Authentication keys if applicable

[Pk >4 Way Handshake)—>] P |

Owning the Master Key == Owning everything else I

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 7/54

The Preshared Key option

e MK is your PSK
o PMK is derived from MK

PMK

PSK PBKDF2 —}

PSK situation
Owning the PSK == Owning MK

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 8/54

The EAP option

@ Authentication between client and RADIUS

@ MK derived from authentication

EAP Auth

o MK pushed to AP by RADIUS

EAP situation

Owning client+RADIUS == Owning MK

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 9/54

Agenda

© WPA-PSK assessment

@ How does that work ?
Theoritical attack cost
Implementation comparisons
Passphrase strength assessment

o
o
o
@ Limits of practical attacks

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 10/54

Calculating the PMK

The master key (MK)

@ it is your secret key, password or passphrase

@ 8 to 63 printable ASCII characters (between
code 32 and 126)

The pairwise master key (PMK)

@ derives from the master key and AP data using
the PBKDF2 function

@ the derivation function is time consuming

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 11/54

The attack

Retrieving the relevant data
@ it must be captured during the handshake
@ it is possible to force this handshake

@ only works for a single SSID

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 11/54

The attack

Retrieving the relevant data
@ it must be captured during the handshake
@ it is possible to force this handshake

@ only works for a single SSID

Testing a master key

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 11/54

The attack

Retrieving the relevant data
@ it must be captured during the handshake
@ it is possible to force this handshake

@ only works for a single SSID

Testing a master key

© for every potential MK, compute the
corresponding PMK

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 11/54

The attack

Retrieving the relevant data
@ it must be captured during the handshake
@ it is possible to force this handshake

@ only works for a single SSID

Testing a master key
© for every potential MK, compute the
corresponding PMK

@ compute the PTK (four HMAC-SHAL1 calls using
PMK and nonces)

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 11/54

The attack

Retrieving the relevant data
@ it must be captured during the handshake
@ it is possible to force this handshake

@ only works for a single SSID

Testing a master key

© for every potential MK, compute the
corresponding PMK

@ compute the PTK (four HMAC-SHAL1 calls using
PMK and nonces)

@ finally, get the MIC (one HMAC-SHAL call) and
compare it with the captured handshake

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 12/54

The PBKDF2 function

Algorithm of PBKDF2

x1 = HMAC_SHA1 (MK, SSID + ’\1’);
x2 = HMAC_SHA1(MK, SSID + ’\2’);
for(i=1;i<4096;i++) {
x1 = HMAC_SHA1 (MK, x1);
x2 = HMAC_SHA1(MK, x2);

}

return x1 + x2;

Cost
@ 8192 calls to HMAC-SHA1

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 13/54

The HMAC-SHA1 function

Algorithm for HMAC(secret, value)

put secret in two 64 bytes buffers, Bi and Bo,
padding with zeroes

Bi
secret00000000000000000000000000
00000000000000000000000000000000

Bo
secret00000000000000000000000000
00000000000000000000000000000000

Copyright (© 2008 EADS

Packin' the PMK — Cédric Blancher and Simon Marechal — 14/54

The HMAC-SHA1 function

Algorithm for HMAC(secret, value)
@ XOR Bi with 0x36
@ XOR Bo with 0x5c

Bi
ESUDSB66666666666666666666666666
66666666666666666666666666666666

Bo
/97 -9 CATT LT
ATV

Copyright (© 2008 EADS

Packin' the PMK — Cédric Blancher and Simon Marechal — 15/54

The HMAC-SHA1 function

Algorithm for HMAC(secret, value)

append value to Bi

Bi
ESUDSB66666666666666666666666666666
66666666666666666666666666666value

Copyright (© 2008 EADS

Packin' the PMK — Cédric Blancher and Simon Marechal — 16/54

The HMAC-SHA1 function

Algorithm for HMAC(secret, value)
append SHA1(Bi) to Bo

Bo

/97 9 CIN LTI
ATELLTELETLEL RV VLN
e7ded45e0b885228e9a48a9add37b504eba7fd3c4

Copyright (© 2008 EADS

Packin' the PMK — Cédric Blancher and Simon Marechal — 17/54

The HMAC-SHA1 function

Algorithm for HMAC(secret, value)
get SHA1(Bo) J

330b72d384df41adf440e1dB8aebb43ab73eecb8a |

Summary

HMAC _SHAL(s, v) =
SHA1((s @ 0x5¢)||SHAL((s @ 0x36)||v))

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 18/54

The SHA1 function

Description
@ it is a cryptographic hash function
works on 64 bytes blocks by padding user inputs
produces a 20 bytes digest
the main part of this function is called "BODY"

other parts have an amortized cost of zero

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 19/54

The HMAC trick

Reminder
@ we want SHA1(Bo || SHA1(Bi || value)) J

What will be computed
@ BODY(secret ~ 0xb5c)
@ BODY(value + padding)
@ = hashl
@ BODY(secret ~ 0x36)
@ BODY(hashl + padding)

@ = result

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 19/54

The HMAC trick

Reminder
@ we want SHA1(Bo || SHA1(Bi || value)) J

What will be computed

@ BODY(secret ~ 0xb5c) o if the secret is
@ BODY(value + padding) constant . ..
@ = hashl
@ BODY(secret ~ 0x36)
@ BODY(hashl + padding)

@ = result

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 19/54

The HMAC trick

Reminder
@ we want SHA1(Bo || SHA1(Bi || value)) J

What will be computed

@ BODY (secret ~ 0xbc) o if the secret is

@ BODY(value + padding) constant . ..

® = hashl @ ...two BODY
@ BODY(secret ~ 0x36) calls could be
o BODY(hashl + padding) cached

@ = result

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 20/54

The BODY function — initialization

Algorithm

unsigned int K[80];

memcpy (K, input, 64);

a = ctx[0]; b= ctx[1]; ¢ = ctx[2];
d = ctx[3]; e = ctx[4];

Operation count

@ 32 bits memory assignments : 22

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 21/54

The BODY function — input expansion

Expand the input

K[i] = K[i -3] ~ K[i—8] °
K[i—-14] ~ K[i—16];
K[i] = rotate_left(K[i],1);

Operation count
@ 32 bits memory assignment : 1

@ elementary operations : 4

@ done 64 times

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 22/54

The BODY function — rounds

Algorithm

STEP(v,w,x,y,z,m,c):
z += F(w,x,y) + ¢ + K[m];
z += rotate_left(v,1);
w = rotate_left(w,30);

Operation count
@ 32 bits memory assignments : 2
@ elementary operations : 5 + cost of F
@ 4 rounds of 20 steps

@ the average F cost is 3.75 operations

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 23/54

The BODY function — ending

Algorithm

a += ctx[0]; b += ctx[1]; ¢ += ctx[2];
d += ctx [3]; e += ctx[4];

Operation count
@ 32 bits memory assignments : 5

@ elementary operations : 5

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 24/54

The BODY function — summary

Elementary operations count
@ initialization : 0
@ input expansion : 4 times 64
@ rounds : 8.75 times 80
@ ending : 5
o total : 961

Comparison with MD5
o MD5 BODY function : 496
o if cracking a single MD5 : 317

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 25/54

The PBKDF2 function cost

Elementary operations count

@ it requires 8192 HMAC-SHAT1 calls using the
same secrets

@ thatis, 2 + 8192 % 2 calls to SHA1

@ that means 15.7M elementary operations

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 26/54

The PBKDF2 function theoritical speed

Hypothesis : perfect processors
@ memory fetch/stores are free

@ no penalties

o for a perfect SSE2 implementation running at
3Ghz on a single x86 core, about 500 checks/s

o for a perfect native CELL (PS3, 7 SPUs)
implementation, about 2,840 checks/s

o for a perfect Linux CELL implementation, about
2,440 checks/s

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 27/54

Real world implementations

Aircrack
@ 650 checks/s on Xeon E5405 (4x2Ghz)
@ 650 checks/s on Opteron 2216 (4x2.4Ghz)
@ "pipe multithreading”, fails on AMD

Pico Computing products
@ on a LX25 FPGA, 430 checks/s
@ on a FX60 FPGA, 1,000 checks/s

Pyrit (GPU Project)
@ around 6,000 checks/s on Tesla C870

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 28/54

Other cracking methods

WPA-PSK "rainbow tables”
o really PMK lookup tables

@ precomputation of 1,000,000 passwords for 1000
SSIDs

Jason Crawford CELL implementation

@ "Lockheed Breaks WPA-Encrypted Wireless
Network With 8 Clustered Sony PlayStations”

e why did | bother, it is already broken :/

@ unknown performance

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 29/54

Implementation on the cell architecture

CELL benchmark
@ not a real cracker, just a bench
@ under Linux, so only 6 SPUs are available

@ pipeline filled by cracking 16 passwords at the
same time

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 29/54

Implementation on the cell architecture

CELL benchmark
@ not a real cracker, just a bench
@ under Linux, so only 6 SPUs are available
@ pipeline filled by cracking 16 passwords at the
same time

4

@ 2,300 checks/s
o close to theoritical 2,400 checks/s
@ expected on CELL

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 30/54

My implementation

NVidia CUDA cracker

@ (almost) full fledged cracker, needs input from a
modified aircrack-ng

o CUDA is easy : from no knowledge to this in 4
days

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 30/54

My implementation

NVidia CUDA cracker

@ (almost) full fledged cracker, needs input from a
modified aircrack-ng

o CUDA is easy : from no knowledge to this in 4
days

4,400 checks/s on a 8800 gts
12,000 checks/s on a gtx280
might not be too hard to do better

roughly equivalent to Pyrit

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 31/54

The best bang for the buck

Raw cost comparisons

Type | checks/s | cost | checks/s/$
LX25 430 385% 1.1
Q6600 800* 190% 4.2
Q9550 900* 325% 2,77
CELL 2300 400% 5.75
gtx280 | 12,000 | 440% 27.3
gtx260 | 9200* | 300% 30.6

But ...
@ speeds marked with a * are not actual

benchmarks, but interpolated results

o the CELL costs of 400% is for a whole
PlayStation

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 32/54

Password strength assessment function

A function F gives the strength s of password p :
F(p) =s.

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 32/54

Password strength assessment function

A function F gives the strength s of password p :
F(p) =s.
Desirable properties

© compute F(p) effectively for any given p

@ for a given s;.x, enumerate and generate all
passwords {po, p1, ... pn} Where
F(Pi) < Smax,1 <1< n

© generate the set {p,, pat1,. .. pp} Where
F(pi) < Smax,a < i < b without generating
{Po, e Pa—l}

@ assess the strength on a detailled scale

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 33/54

Well known methods

Dictionnary checks

it is weak if it is in a dictionnary
= limited to "known" passwords

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 33/54

Well known methods

Dictionnary checks

it is weak if it is in a dictionnary
= limited to "known" passwords

Charset complexity

a strong password contains letters, numbers and at
least three special characters
= Weak passwords could still be created

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 33/54

Well known methods

Dictionnary checks

it is weak if it is in a dictionnary
= limited to "known" passwords

Charset complexity

a strong password contains letters, numbers and at
least three special characters
= Weak passwords could still be created

Cracking tests

it is weak if it is cracked in less than 4 hours with
Jjohn on my computer

= requires computing ressources compatible with the
risk analysis

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 34/54

A better method

Markov chains

@ the conditional probability distribution of letter
L, in a password is a function of the previous
letter, L,_1, written P(Lp|Ln—1)

e for example, P(sun) = P(s).P(uls).P(n|u)

@ to keep friendly numbers,

P'(x) = —10.log(P(x))
e P'(sun) = P'(s)+ P'(uls) + P'(n|u)

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 35/54

In practice

It works well
@ has all the desired properties
@ cracks more effectively than john -inc (in my
tests!)
@ a patch exists for john

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 35/54

In practice

It works well
@ has all the desired properties

@ cracks more effectively than john -inc (in my
tests!)

@ a patch exists for john

v

Sample strength

"chall”, strength 100
"chando33", strength 200
"chaneoHQ", strength 300
"chanlLr%", strength 400
"chanereaAiO4", strength 500
"% 1", strength 1097

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 36/54

Hypothesis

Attacker strength

Attacker Available time | Ressources
(GPUs)
Wardriver 15 minutes 1
Individual 7 days 2
Large organisation 1 year 1024

Defender strength

@ worst case scenario : mac user :)

@ password is 12 characters or less

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 37/54

Not so good passwords

Statistics source
@ an Apple themed forum that got owned

@ clear text passwords published on 4chan

Passwords strength

@ 628,753 passwords
@ mean strength : 245

@ median strength : 197

@ most common passwords " base” : password,
qwerty, apple, letmein

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 38/54

Strength of crackable passwords

Now
@ wardriver : 7.2M, markov strength of 169
o individual : 14.5G, markov strength of 239

o large organisation : 387.8T, markov strength of
344

In 10 years, 32 times faster (Moore)
@ wardriver : 345.6M, markov strength of 202
@ individual : 464.5G, markov strength of 273

o large organisation : 12409T, markov strength of
388

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 39/54

Discovery ratio vs. computing power

100%

90%

75%

50%
9
2
e
o
o

2 25%
@
a

0% T T 1
100 200 300 400

Cracking capacity

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 39/54

Discovery ratio vs. computing power

100%

90%

75%

50%
9
2
e
o
o

2 25%
@
a

0% T T 1
100 200 300 400

Cracking capacity

e Wardriver
Individual
o Organization

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 39/54

Discovery ratio vs. computing power

100%

90%

75%

50%
9
2
e
o
o

2 25%
@
a

0% T T 1
100 200 300 400

Cracking capacity

e Wardriver
Individual

o Organization
10 years projection

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 40/54

Agenda

e WPA-EAP thoughts
@ EAP authentication
@ Pwning the Master Key
@ Practical considerations

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 41/54

Usual issues

EAP strength directly linked to good configuration
@ Good choice in EAP method
@ Proper RADIUS authentication

In particular...
Strictly verify RADIUS certificate to avoid MiM }

Copyright (© 2008 EADS

Packin’' the PMK — Cédric Blancher and Simon Marechal — 42/54

Looking more carefully

AP acts as a relay between client and RADIUS server

t EAP Auth.

Copyright (© 2008 EADS

Packin’' the PMK — Cédric Blancher and Simon Marechal — 42/54

Looking more carefully

AP acts as a relay between client and RADIUS server

t EAP Auth.

Direct EAP communication between client and
RADIUS J

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 43/54

What if...

There was an exploitable flaw within EAP 7
@ Ability to execute arbitrary code
@ Access to RADIUS database
@ Access to backend
o Etc.

More importantly
Ability to generate RADIUS traffic!

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 44/54

Of MK transmission

AP notification
When authentication done, RADIUS notifies AP
@ EAP Success (3) or Failure (4)

e MK sent using MS-MPPE-Recv-Key (attribute
17)

@ HMAC-MDS5 message (attribute 80)

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 45/54

Injecting arbitrary MK

@ Have your shellcode executed

e Craft a EAP Success

@ Put your own MK in MS-MPPE-Recv-Key
@ Have it sent to AP

You need to compute HMAC-MD5 message I

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 46/54

Bypassing HMAC-MD5

@ You don't know RADIUS secret

@ But you own the server...

Ideas
@ Read secret from conf/memory
@ Ask RADIUS to craft packet for you

Product dependant methods J

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 47/54

In practice

Some stuff done or to do
o EAP fuzzing (flaws)
o EAP fingerprinting (id)

o Exploits

Attacker can have his own MK sent back to AP I

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 48/54

Not quite the end of it...

Still need to perform 4-Way Handshake
e Hack a WPA/WPA2 supplicant!

@ Specific module for wpa_supplicant

Step by step
Answer EAP Request from AP

Start EAP dialog to RADIUS
Trigger the vulnerability

Deliver exploit
Grab EAP Success from AP

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 49/54

When you're done...

In the end...
@ Rogue client starts authenticating
@ Exploits RADIUS server
@ Gets authenticated with arbitrary MK
o Finish WPA/WPA?2 dialog with AP

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 49/54

When you're done...

In the end...
@ Rogue client starts authenticating
@ Exploits RADIUS server
@ Gets authenticated with arbitrary MK
o Finish WPA/WPA?2 dialog with AP

4

Most importantly...
He can now access the network through Wi-Fi

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 50/54

Agenda

@ Conclusion

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 51/54

PSK selection

Recommandations
o if possible, just use a random 64 bytes value, or
one of the safer authentication schemes
@ passwords not derived from a known word and
with a strength of 400 or more on the Markov
scale should be safe for the next years

@ just use "chanereaAiO4", it is safe!

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 51/54

PSK selection

Recommandations
o if possible, just use a random 64 bytes value, or
one of the safer authentication schemes
@ passwords not derived from a known word and
with a strength of 400 or more on the Markov
scale should be safe for the next years

@ just use "chanereaAiO4", it is safe!

V.

Beware

@ the cracker might have a better model for his
attacks

@ "real” sentences might seem safe because they
are long, but are likely to be weak

@ crypto flaws might be discovered and exploited

V.

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 52/54

The future of PSK

Automatic key setup
@ several proprietary solutions, and a standard

@ automagically sets the network and security
settings

@ removes user input, no more bad keys (hopefully)

Wi-Fi Protected Setup
@ standard from the Wi-Fi Alliance
@ authenticates the device by

e in-band : entering a PIN code, pushing a button
e out-of-band : connecting an USB stick, reading
RFIDs

@ might be attacked during the first association

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 53/54

EAP considerations

Recommandations

Carefully choose your EAP method

@ Ensure clients can authenticate RADIUS
@ Harden your RADIUS box
o

Proxy authentication to another AAA server

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 53/54

EAP considerations

Recommandations

Carefully choose your EAP method

@ Ensure clients can authenticate RADIUS
@ Harden your RADIUS box
o

Proxy authentication to another AAA server

<

Beware

@ RADIUS certificate must checked, always

@ Against your very own CA, only

Copyright (© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 54/54

The end...

Thank you all for your attention

Questions ? J

Copyright (© 2008 EADS

	WPA/WPA2 authentication
	WPA-PSK assessment
	How does that work?
	Theoritical attack cost
	Implementation comparisons
	Passphrase strength assessment
	Limits of practical attacks

	WPA-EAP thoughts
	EAP authentication
	Pwning the Master Key
	Practical considerations

	Conclusion

