
Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 1/54

Packin’ the PMK
Of the robustness of WPA/WPA2 authentication

Cédric Blancher and Simon Marechal

cedric.blancher@eads.net

Computer Security Research Lab
EADS Innovation Works

simon@banquise.net

Special guest
Undisclosed entity ;)

BA-Con - September 30th - October 1st 2008

http://ba-con.com.ar/

http://ba-con.com.ar/

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 2/54

Agenda

1 WPA/WPA2 authentication

2 WPA-PSK assessment
How does that work ?
Theoritical attack cost
Implementation comparisons
Passphrase strength assessment
Limits of practical attacks

3 WPA-EAP thoughts
EAP authentication
Pwning the Master Key
Practical considerations

4 Conclusion

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 3/54

Introduction

Wi-Fi security...

WEP is crippled and broken

WPA came up to replace it

Now, we have WPA2

Questions

What are WPA and WPA2 good at ?

How long will they stand ?

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 3/54

Introduction

Wi-Fi security...

WEP is crippled and broken

WPA came up to replace it

Now, we have WPA2

Questions

What are WPA and WPA2 good at ?

How long will they stand ?

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 4/54

Agenda

1 WPA/WPA2 authentication

2 WPA-PSK assessment
How does that work ?
Theoritical attack cost
Implementation comparisons
Passphrase strength assessment
Limits of practical attacks

3 WPA-EAP thoughts
EAP authentication
Pwning the Master Key
Practical considerations

4 Conclusion

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 5/54

Authentication modes

Preshared secret (PSK)

EAP

EAP Auth PMK 4 Way Handshake PTK

PSK PBKDF2

Key hierarchy

Authentication leads to Master Key (MK)

Pairwise Master Key (PMK) derived from MK

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 6/54

One key to rule them all...

From MK come all further keys

Pairwise Master Key

Key exchange keys

Encryption keys

Authentication keys if applicable

KEK

PMK 4 Way Handshake PTK TEK

TMK

Conclusion

Owning the Master Key == Owning everything else

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 7/54

The Preshared Key option

MK is your PSK

PMK is derived from MK

PMK

PSK PBKDF2

PSK situation

Owning the PSK == Owning MK

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 8/54

The EAP option

Authentication between client and RADIUS

MK derived from authentication

Client

EAP Auth MK

RADIUS

MK pushed to AP by RADIUS

EAP situation

Owning client+RADIUS == Owning MK

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 9/54

Agenda

1 WPA/WPA2 authentication

2 WPA-PSK assessment
How does that work ?
Theoritical attack cost
Implementation comparisons
Passphrase strength assessment
Limits of practical attacks

3 WPA-EAP thoughts
EAP authentication
Pwning the Master Key
Practical considerations

4 Conclusion

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 10/54

Calculating the PMK

The master key (MK)

it is your secret key, password or passphrase

8 to 63 printable ASCII characters (between
code 32 and 126)

The pairwise master key (PMK)

derives from the master key and AP data using
the PBKDF2 function

the derivation function is time consuming

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 11/54

The attack

Retrieving the relevant data

it must be captured during the handshake

it is possible to force this handshake

only works for a single SSID

Testing a master key

1 for every potential MK, compute the
corresponding PMK

2 compute the PTK (four HMAC-SHA1 calls using
PMK and nonces)

3 finally, get the MIC (one HMAC-SHA1 call) and
compare it with the captured handshake

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 11/54

The attack

Retrieving the relevant data

it must be captured during the handshake

it is possible to force this handshake

only works for a single SSID

Testing a master key

1 for every potential MK, compute the
corresponding PMK

2 compute the PTK (four HMAC-SHA1 calls using
PMK and nonces)

3 finally, get the MIC (one HMAC-SHA1 call) and
compare it with the captured handshake

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 11/54

The attack

Retrieving the relevant data

it must be captured during the handshake

it is possible to force this handshake

only works for a single SSID

Testing a master key

1 for every potential MK, compute the
corresponding PMK

2 compute the PTK (four HMAC-SHA1 calls using
PMK and nonces)

3 finally, get the MIC (one HMAC-SHA1 call) and
compare it with the captured handshake

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 11/54

The attack

Retrieving the relevant data

it must be captured during the handshake

it is possible to force this handshake

only works for a single SSID

Testing a master key

1 for every potential MK, compute the
corresponding PMK

2 compute the PTK (four HMAC-SHA1 calls using
PMK and nonces)

3 finally, get the MIC (one HMAC-SHA1 call) and
compare it with the captured handshake

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 11/54

The attack

Retrieving the relevant data

it must be captured during the handshake

it is possible to force this handshake

only works for a single SSID

Testing a master key

1 for every potential MK, compute the
corresponding PMK

2 compute the PTK (four HMAC-SHA1 calls using
PMK and nonces)

3 finally, get the MIC (one HMAC-SHA1 call) and
compare it with the captured handshake

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 12/54

The PBKDF2 function

Algorithm of PBKDF2

x1 = HMAC_SHA1(MK, SSID + ’\1’);
x2 = HMAC_SHA1(MK, SSID + ’\2’);
for(i=1;i<4096;i++) {

x1 = HMAC_SHA1(MK, x1);
x2 = HMAC_SHA1(MK, x2);

}
return x1 + x2;

Cost

8192 calls to HMAC-SHA1

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 13/54

The HMAC-SHA1 function

Algorithm for HMAC(secret, value)

put secret in two 64 bytes buffers, Bi and Bo,
padding with zeroes

Bi
secret00000000000000000000000000
00000000000000000000000000000000

Bo
secret00000000000000000000000000
00000000000000000000000000000000

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 14/54

The HMAC-SHA1 function

Algorithm for HMAC(secret, value)

XOR Bi with 0x36

XOR Bo with 0x5c

Bi
ESUDSB66666666666666666666666666
66666666666666666666666666666666

Bo
/9?.9(\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 15/54

The HMAC-SHA1 function

Algorithm for HMAC(secret, value)

append value to Bi

Bi
ESUDSB66666666666666666666666666666
66666666666666666666666666666value

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 16/54

The HMAC-SHA1 function

Algorithm for HMAC(secret, value)

append SHA1(Bi) to Bo

Bo
/9?.9(\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
e7de45e0b885228e9a48a9add37b504eba7fd3c4

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 17/54

The HMAC-SHA1 function

Algorithm for HMAC(secret, value)

get SHA1(Bo)

330b72d384df41adf440e1d8aeb543ab73eecb8a

Summary

HMAC SHA1(s, v) =
SHA1((s ⊕ 0x5c)||SHA1((s ⊕ 0x36)||v))

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 18/54

The SHA1 function

Description

it is a cryptographic hash function

works on 64 bytes blocks by padding user inputs

produces a 20 bytes digest

the main part of this function is called ”BODY”

other parts have an amortized cost of zero

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 19/54

The HMAC trick

Reminder

we want SHA1(Bo || SHA1(Bi || value))

What will be computed

BODY(secret ^ 0x5c)

BODY(value + padding)

⇒ hash1

BODY(secret ^ 0x36)

BODY(hash1 + padding)

⇒ result

if the secret is
constant . . .

. . . two BODY
calls could be
cached

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 19/54

The HMAC trick

Reminder

we want SHA1(Bo || SHA1(Bi || value))

What will be computed

BODY(secret ^ 0x5c)

BODY(value + padding)

⇒ hash1

BODY(secret ^ 0x36)

BODY(hash1 + padding)

⇒ result

if the secret is
constant . . .

. . . two BODY
calls could be
cached

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 19/54

The HMAC trick

Reminder

we want SHA1(Bo || SHA1(Bi || value))

What will be computed

BODY(secret ^ 0x5c)

BODY(value + padding)

⇒ hash1

BODY(secret ^ 0x36)

BODY(hash1 + padding)

⇒ result

if the secret is
constant . . .

. . . two BODY
calls could be
cached

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 20/54

The BODY function – initialization

Algorithm

unsigned i n t K [8 0] ;
memcpy (K, i n p u t , 6 4) ;
a = c t x [0] ; b = c t x [1] ; c = c t x [2] ;
d = c t x [3] ; e = c t x [4] ;

Operation count

32 bits memory assignments : 22

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 21/54

The BODY function – input expansion

Expand the input

K[i] = K[i −3] ˆ K[i −8] ˆ
K[i −14] ˆ K[i −16] ;

K[i] = r o t a t e l e f t (K[i] , 1) ;

Operation count

32 bits memory assignment : 1

elementary operations : 4

done 64 times

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 22/54

The BODY function – rounds

Algorithm

STEP(v , w, x , y , z ,m, c) :
z += F (w, x , y) + c + K[m] ;
z += r o t a t e l e f t (v , 1) ;
w = r o t a t e l e f t (w , 3 0) ;

Operation count

32 bits memory assignments : 2

elementary operations : 5 + cost of F

4 rounds of 20 steps

the average F cost is 3.75 operations

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 23/54

The BODY function – ending

Algorithm

a += c t x [0] ; b += c t x [1] ; c += c t x [2] ;
d += c t x [3] ; e += c t x [4] ;

Operation count

32 bits memory assignments : 5

elementary operations : 5

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 24/54

The BODY function – summary

Elementary operations count

initialization : 0

input expansion : 4 times 64

rounds : 8.75 times 80

ending : 5

total : 961

Comparison with MD5

MD5 BODY function : 496

if cracking a single MD5 : 317

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 25/54

The PBKDF2 function cost

Elementary operations count

it requires 8192 HMAC-SHA1 calls using the
same secrets

that is, 2 + 8192 ∗ 2 calls to SHA1

that means 15.7M elementary operations

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 26/54

The PBKDF2 function theoritical speed

Hypothesis : perfect processors

memory fetch/stores are free

no penalties

Speeds

for a perfect SSE2 implementation running at
3Ghz on a single x86 core, about 500 checks/s

for a perfect native CELL (PS3, 7 SPUs)
implementation, about 2,840 checks/s

for a perfect Linux CELL implementation, about
2,440 checks/s

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 27/54

Real world implementations

Aircrack

650 checks/s on Xeon E5405 (4x2Ghz)

650 checks/s on Opteron 2216 (4x2.4Ghz)

”pipe multithreading”, fails on AMD

Pico Computing products

on a LX25 FPGA, 430 checks/s

on a FX60 FPGA, 1,000 checks/s

Pyrit (GPU Project)

around 6,000 checks/s on Tesla C870

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 28/54

Other cracking methods

WPA-PSK ”rainbow tables”

really PMK lookup tables

precomputation of 1,000,000 passwords for 1000
SSIDs

Jason Crawford CELL implementation

”Lockheed Breaks WPA-Encrypted Wireless
Network With 8 Clustered Sony PlayStations”

why did I bother, it is already broken :/

unknown performance

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 29/54

Implementation on the cell architecture

CELL benchmark

not a real cracker, just a bench

under Linux, so only 6 SPUs are available

pipeline filled by cracking 16 passwords at the
same time

Result

2,300 checks/s

close to theoritical 2,400 checks/s

expected on CELL

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 29/54

Implementation on the cell architecture

CELL benchmark

not a real cracker, just a bench

under Linux, so only 6 SPUs are available

pipeline filled by cracking 16 passwords at the
same time

Result

2,300 checks/s

close to theoritical 2,400 checks/s

expected on CELL

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 30/54

My implementation

NVidia CUDA cracker

(almost) full fledged cracker, needs input from a
modified aircrack-ng

CUDA is easy : from no knowledge to this in 4
days

Result

4,400 checks/s on a 8800 gts

12,000 checks/s on a gtx280

might not be too hard to do better

roughly equivalent to Pyrit

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 30/54

My implementation

NVidia CUDA cracker

(almost) full fledged cracker, needs input from a
modified aircrack-ng

CUDA is easy : from no knowledge to this in 4
days

Result

4,400 checks/s on a 8800 gts

12,000 checks/s on a gtx280

might not be too hard to do better

roughly equivalent to Pyrit

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 31/54

The best bang for the buck

Raw cost comparisons

Type checks/s cost checks/s/$

LX25 430 385$ 1.1
Q6600 800* 190$ 4.2
Q9550 900* 325$ 2.77
CELL 2300 400$ 5.75

gtx280 12,000 440$ 27.3
gtx260 9200* 300$ 30.6

But . . .

speeds marked with a * are not actual
benchmarks, but interpolated results

the CELL costs of 400$ is for a whole
PlayStation

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 32/54

Password strength assessment function

A function F gives the strength s of password p :
F (p) = s.

Desirable properties

1 compute F (p) effectively for any given p

2 for a given smax , enumerate and generate all
passwords {p0, p1, . . . pn} where
F (pi) < smax , 1 ≤ i ≤ n

3 generate the set {pa, pa+1, . . . pb} where
F (pi) < smax , a ≤ i ≤ b without generating
{p0, . . . pa−1}

4 assess the strength on a detailled scale

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 32/54

Password strength assessment function

A function F gives the strength s of password p :
F (p) = s.

Desirable properties

1 compute F (p) effectively for any given p

2 for a given smax , enumerate and generate all
passwords {p0, p1, . . . pn} where
F (pi) < smax , 1 ≤ i ≤ n

3 generate the set {pa, pa+1, . . . pb} where
F (pi) < smax , a ≤ i ≤ b without generating
{p0, . . . pa−1}

4 assess the strength on a detailled scale

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 33/54

Well known methods

Dictionnary checks

it is weak if it is in a dictionnary
⇒ limited to ”known” passwords

Charset complexity

a strong password contains letters, numbers and at
least three special characters
⇒ Weak passwords could still be created

Cracking tests

it is weak if it is cracked in less than 4 hours with
john on my computer
⇒ requires computing ressources compatible with the
risk analysis

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 33/54

Well known methods

Dictionnary checks

it is weak if it is in a dictionnary
⇒ limited to ”known” passwords

Charset complexity

a strong password contains letters, numbers and at
least three special characters
⇒ Weak passwords could still be created

Cracking tests

it is weak if it is cracked in less than 4 hours with
john on my computer
⇒ requires computing ressources compatible with the
risk analysis

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 33/54

Well known methods

Dictionnary checks

it is weak if it is in a dictionnary
⇒ limited to ”known” passwords

Charset complexity

a strong password contains letters, numbers and at
least three special characters
⇒ Weak passwords could still be created

Cracking tests

it is weak if it is cracked in less than 4 hours with
john on my computer
⇒ requires computing ressources compatible with the
risk analysis

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 34/54

A better method

Markov chains

the conditional probability distribution of letter
Ln in a password is a function of the previous
letter, Ln−1, written P(Ln|Ln−1)

for example, P(sun) = P(s).P(u|s).P(n|u)

to keep friendly numbers,
P ′(x) = −10.log(P(x))

P ′(sun) = P ′(s) + P ′(u|s) + P ′(n|u)

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 35/54

In practice

It works well

has all the desired properties

cracks more effectively than john -inc (in my
tests !)

a patch exists for john

Sample strength

”chall”, strength 100

”chando33”, strength 200

”chaneoH0”, strength 300

”chanlLr%”, strength 400

”chanereaAiO4”, strength 500

”% !”, strength 1097

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 35/54

In practice

It works well

has all the desired properties

cracks more effectively than john -inc (in my
tests !)

a patch exists for john

Sample strength

”chall”, strength 100

”chando33”, strength 200

”chaneoH0”, strength 300

”chanlLr%”, strength 400

”chanereaAiO4”, strength 500

”% !”, strength 1097

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 36/54

Hypothesis

Attacker strength

Attacker Available time Ressources
(GPUs)

Wardriver 15 minutes 1
Individual 7 days 2

Large organisation 1 year 1024

Defender strength

worst case scenario : mac user :)

password is 12 characters or less

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 37/54

Not so good passwords

Statistics source

an Apple themed forum that got owned

clear text passwords published on 4chan

Passwords strength

628,753 passwords

mean strength : 245

median strength : 197

most common passwords ”base” : password,
qwerty, apple, letmein

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 38/54

Strength of crackable passwords

Now

wardriver : 7.2M, markov strength of 169

individual : 14.5G, markov strength of 239

large organisation : 387.8T, markov strength of
344

In 10 years, 32 times faster (Moore)

wardriver : 345.6M, markov strength of 202

individual : 464.5G, markov strength of 273

large organisation : 12409T, markov strength of
388

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 39/54

Discovery ratio vs. computing power

100 200 300 400

0%

25%

50%

75%

90%

100%

Cracking capacity

D
is

co
ve

ry
ra

ti
o

Wardriver

Individual
Organization

10 years projection

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 39/54

Discovery ratio vs. computing power

100 200 300 400

0%

25%

50%

75%

90%

100%

Cracking capacity

D
is

co
ve

ry
ra

ti
o

Wardriver

Individual
Organization

10 years projection

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 39/54

Discovery ratio vs. computing power

100 200 300 400

0%

25%

50%

75%

90%

100%

Cracking capacity

D
is

co
ve

ry
ra

ti
o

Wardriver

Individual
Organization

10 years projection

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 40/54

Agenda

1 WPA/WPA2 authentication

2 WPA-PSK assessment
How does that work ?
Theoritical attack cost
Implementation comparisons
Passphrase strength assessment
Limits of practical attacks

3 WPA-EAP thoughts
EAP authentication
Pwning the Master Key
Practical considerations

4 Conclusion

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 41/54

Usual issues

EAP strength directly linked to good configuration

Good choice in EAP method

Proper RADIUS authentication

In particular...

Strictly verify RADIUS certificate to avoid MiM

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 42/54

Looking more carefully

AP acts as a relay between client and RADIUS server

AssocReq AP

Station IdReq IdReq RADIUS

EAP Auth.

Direct EAP communication between client and
RADIUS

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 42/54

Looking more carefully

AP acts as a relay between client and RADIUS server

AssocReq AP

Station IdReq IdReq RADIUS

EAP Auth.

Direct EAP communication between client and
RADIUS

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 43/54

What if...

There was an exploitable flaw within EAP ?

Ability to execute arbitrary code

Access to RADIUS database

Access to backend

Etc.

More importantly

Ability to generate RADIUS traffic !

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 44/54

Of MK transmission

AP notification

When authentication done, RADIUS notifies AP

EAP Success (3) or Failure (4)

MK sent using MS-MPPE-Recv-Key (attribute
17)

HMAC-MD5 message (attribute 80)

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 45/54

Injecting arbitrary MK

Have your shellcode executed

Craft a EAP Success

Put your own MK in MS-MPPE-Recv-Key

Have it sent to AP

Small issue...

You need to compute HMAC-MD5 message

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 46/54

Bypassing HMAC-MD5

You don’t know RADIUS secret

But you own the server...

Ideas

Read secret from conf/memory

Ask RADIUS to craft packet for you

Product dependant methods

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 47/54

In practice

Some stuff done or to do

EAP fuzzing (flaws)

EAP fingerprinting (id)

Exploits

Then...

Attacker can have his own MK sent back to AP

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 48/54

Not quite the end of it...

Still need to perform 4-Way Handshake

Hack a WPA/WPA2 supplicant !

Specific module for wpa supplicant

Step by step

Answer EAP Request from AP

Start EAP dialog to RADIUS

Trigger the vulnerability

Deliver exploit

Grab EAP Success from AP

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 49/54

When you’re done...

In the end...

Rogue client starts authenticating

Exploits RADIUS server

Gets authenticated with arbitrary MK

Finish WPA/WPA2 dialog with AP

Most importantly...

He can now access the network through Wi-Fi

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 49/54

When you’re done...

In the end...

Rogue client starts authenticating

Exploits RADIUS server

Gets authenticated with arbitrary MK

Finish WPA/WPA2 dialog with AP

Most importantly...

He can now access the network through Wi-Fi

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 50/54

Agenda

1 WPA/WPA2 authentication

2 WPA-PSK assessment
How does that work ?
Theoritical attack cost
Implementation comparisons
Passphrase strength assessment
Limits of practical attacks

3 WPA-EAP thoughts
EAP authentication
Pwning the Master Key
Practical considerations

4 Conclusion

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 51/54

PSK selection

Recommandations

if possible, just use a random 64 bytes value, or
one of the safer authentication schemes

passwords not derived from a known word and
with a strength of 400 or more on the Markov
scale should be safe for the next years

just use ”chanereaAiO4”, it is safe !

Beware

the cracker might have a better model for his
attacks

”real” sentences might seem safe because they
are long, but are likely to be weak

crypto flaws might be discovered and exploited

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 51/54

PSK selection

Recommandations

if possible, just use a random 64 bytes value, or
one of the safer authentication schemes

passwords not derived from a known word and
with a strength of 400 or more on the Markov
scale should be safe for the next years

just use ”chanereaAiO4”, it is safe !

Beware

the cracker might have a better model for his
attacks

”real” sentences might seem safe because they
are long, but are likely to be weak

crypto flaws might be discovered and exploited

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 52/54

The future of PSK

Automatic key setup

several proprietary solutions, and a standard

automagically sets the network and security
settings

removes user input, no more bad keys (hopefully)

Wi-Fi Protected Setup

standard from the Wi-Fi Alliance

authenticates the device by

in-band : entering a PIN code, pushing a button
out-of-band : connecting an USB stick, reading
RFIDs

might be attacked during the first association

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 53/54

EAP considerations

Recommandations

Carefully choose your EAP method

Ensure clients can authenticate RADIUS

Harden your RADIUS box

Proxy authentication to another AAA server

Beware

RADIUS certificate must checked, always

Against your very own CA, only

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 53/54

EAP considerations

Recommandations

Carefully choose your EAP method

Ensure clients can authenticate RADIUS

Harden your RADIUS box

Proxy authentication to another AAA server

Beware

RADIUS certificate must checked, always

Against your very own CA, only

Copyright c© 2008 EADS

Packin’ the PMK — Cédric Blancher and Simon Marechal — 54/54

The end...

Thank you all for your attention

Questions ?

	WPA/WPA2 authentication
	WPA-PSK assessment
	How does that work?
	Theoritical attack cost
	Implementation comparisons
	Passphrase strength assessment
	Limits of practical attacks

	WPA-EAP thoughts
	EAP authentication
	Pwning the Master Key
	Practical considerations

	Conclusion

